Production of pions and clusters in heavy-ion collisions by the AMD+JAM approach

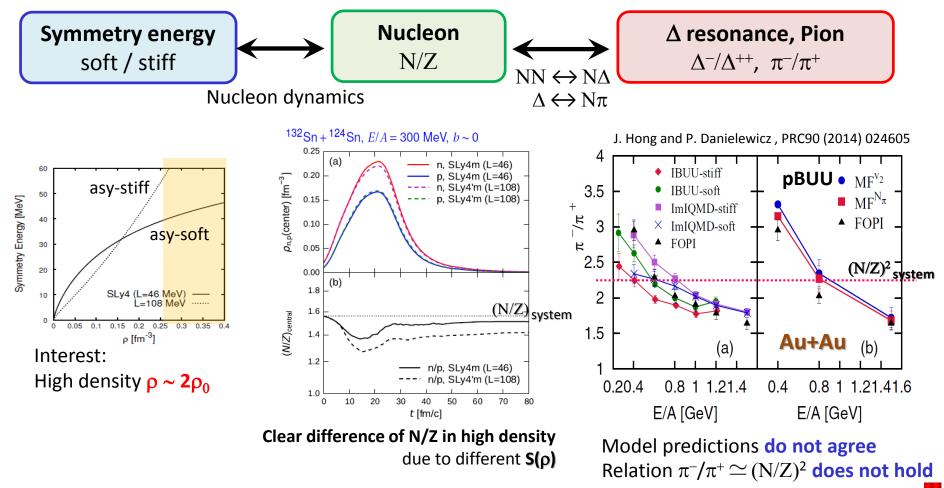
Natsumi Ikeno (Tottori University)

A. Ono (Tohoku Univ.), Y. Nara (Akita International Univ.), A. Ohnishi (YITP)

Transport 2017: International Workshop on Transport Simulations for Heavy Ion Collisions under Controlled Conditions FRIB-MSU, East Lansing, Michigan, USA, March 27 - 30, 2017

Pion and Symmetry energy

> Motivation: We like to understand how Δ resonances and pions are affected by the dynamics of neutrons and protons in HIC.



Our study

Pion production in ¹³²Sn + ¹²⁴Sn Collision @E/A=300 MeV

Symmetry energy

soft / stiff

Some effects

- ✓ Symmetry energy (soft/stiff)
- ✓ Cluster correlation
- ✓ Pauli blocking (NEW)

¹³²Sn + ¹²⁴Sn, ¹⁰⁸Sn + ¹¹²Sn Collision @270 MeV

- Experiment at RIKEN/RIBF
 SπRIT project
- ✓ Energy dependence
- ✓ Impact parameter dependence

Nucleon

N/Z

> Theoretical Model:

AMD

- Nucleon dynamics
- Treatment of cluster correlation

JAM

- π , Δ production in the reaction process
- hadronic cascade model

 Δ resonance, Pion

Transport model (AMD + JAM)

 \blacktriangleright Coupled equations for $f_{\alpha}(\mathbf{r}, \mathbf{p}, t)$ ($\alpha = N, \Delta, \pi$) $\frac{\partial f_{N}}{\partial t} + \frac{\partial h_{N}}{\partial p} \cdot \frac{\partial f_{N}}{\partial r} - \frac{\partial h_{N}[f_{N}, f_{\Delta,\pi}]}{\partial r} \cdot \frac{\partial f_{D}}{\partial p} = I_{N}[f_{N}, f_{\Delta,\pi}]$ $\frac{\partial f_{\Delta,\pi}}{\partial t} + \frac{\partial h_{\Delta,\pi}}{\partial p} \cdot \frac{\partial f_{\Delta,\pi}}{\partial r} - \frac{\partial h_{\Delta,\pi}[f_{N}, f_{\Delta,\pi}]}{\partial r} \cdot \frac{\partial f_{\Delta,\pi}}{\partial p} = I_{\Delta,\pi}[f_{N}, f_{\Delta,\pi}]$ $\begin{pmatrix} N N \rightarrow N N \\ N N \rightarrow N \Delta \\ N \Delta \rightarrow N N \\ \Delta \rightarrow N \pi \\ N \pi \rightarrow \Delta & \dots \text{ etc.} \end{pmatrix}$ $\frac{\partial f_N}{\partial t} + \frac{\partial h_N}{\partial \boldsymbol{p}} \cdot \frac{\partial f_N}{\partial \boldsymbol{r}} - \frac{\partial h_N[f_N, f_{\Delta, \pi}]}{\partial \boldsymbol{r}} \cdot \frac{\partial f_N}{\partial \boldsymbol{p}} = I_N[f_N, f_{\Delta, \pi}]$

 $I_{\rm N}[f_{\rm N}, f_{\Delta, \pi}]$:collision term

Our model: JAM coupled with AMD

Perturbative treatment of pion and Δ particle production

$$I_N = I_N^{\rm el}[f_N, 0] + \lambda I_N'[f_N, f_{\Delta, \pi}]$$

 $\left(egin{array}{ll} f_{\Delta,\pi}=O(\lambda):\Delta ext{ and pion productions are rare} \ f_N=f_N^{(0)}+\lambda f_N^{(1)}+... \end{array}
ight.$

• Nucleon f_N : Zeroth order equation

$$\frac{\partial f_N^{(0)}}{\partial t} + \frac{\partial h_N}{\partial \boldsymbol{p}} \cdot \frac{\partial f_N^{(0)}}{\partial \boldsymbol{r}} - \frac{\partial h_N[f_N^{(0)}, 0]}{\partial \boldsymbol{r}} \cdot \frac{\partial f_N^{(0)}}{\partial \boldsymbol{p}} = I_N^{\rm el}[f_N^{(0)}, 0]$$

Solved by AMD

• Δ particle f_{Δ} and pion f_{π} : First order equation Solved by **JAM** $\frac{\partial f_{\Delta,\pi}}{\partial t} + \frac{\partial h_{\Delta,\pi}}{\partial \boldsymbol{p}} \cdot \frac{\partial f_{\Delta,\pi}}{\partial \boldsymbol{r}} - \frac{\partial h_{\Delta,\pi}[f_N^{(0)}, f_{\Delta,\pi}]}{\partial \boldsymbol{r}} \cdot \frac{\partial f_{\Delta,\pi}}{\partial \boldsymbol{p}} = I_{\Delta,\pi}[f_N^{(0)}, f_{\Delta,\pi}]$ for given $f_{\rm N}^{(0)}$

Transport model (AMD + JAM)

AMD (Antisymmetrized Molecular Dynamics) A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, PTP87 (1992) 1185

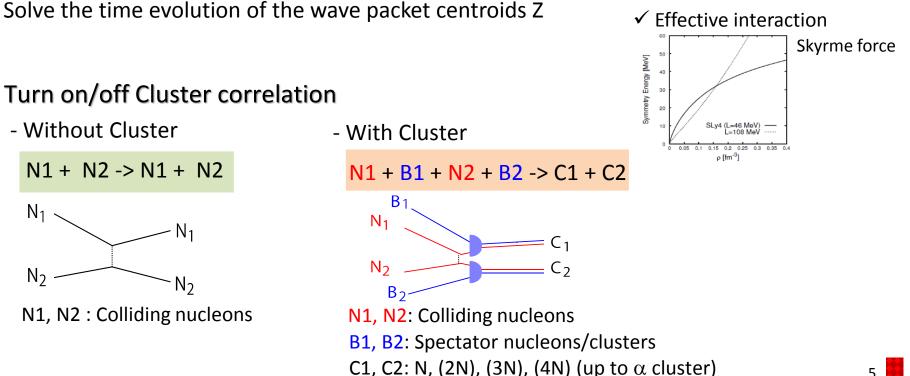
AMD wave function

$$\bigoplus_{i \neq j} \bigcirc |\Phi(Z)\rangle = \frac{\det_{ij} \left[\exp\left\{ -\nu \left(\mathbf{r}_j - \frac{\mathbf{Z}_i}{\sqrt{\nu}} \right)^2 \right\} \chi_{\alpha_i}(j) \right]$$

$$\mathbf{Z}_i = \sqrt{\nu} \mathbf{D}_i + \frac{i}{2\hbar \sqrt{\nu}} \mathbf{K}_i$$

 ν : Width parameter = (2.5 fm)⁻²

 χ_{α_i} : Spin-isospin states = $p \uparrow, p \downarrow, n \uparrow, n \downarrow$



- Without Cluster

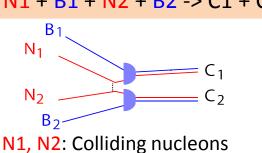
 N_2

N1 + N2 -> N1 + N2 N₁ N1

N1, N2 : Colliding nucleons

Nэ

- With Cluster



Transport model (AMD + JAM)

Nucleon test Particles

Test particles $(\mathbf{r}_1, \mathbf{p}_1)$, $(\mathbf{r}_2, \mathbf{p}_2)$, ..., $(\mathbf{r}_A, \mathbf{p}_A)$ are generated following the Wigner function $f_{AMD}^{\tau}(\mathbf{r}, \mathbf{p})$ for τ = neutron or proton

$$f_{\rm AMD}^{\tau}(\boldsymbol{r}, \boldsymbol{p}) = \frac{1}{2} \times 2^3 \sum_{j \in \tau} \sum_{k \in \tau} e^{-2\nu(\boldsymbol{r} - \boldsymbol{R}_{jk})^2 - (\boldsymbol{p} - \boldsymbol{P}_{jk})^2 / 2\hbar^2 \nu} B_{jk} B_{kj}^{-1}$$

We send nucleon test particles $(\mathbf{r}_1, \mathbf{p}_1), (\mathbf{r}_2, \mathbf{p}_2), ..., (\mathbf{r}_A, \mathbf{p}_A)$ from AMD to JAM at every 2 fm/c with corrections for the conservation of baryon number and charge.

JAM (Jet AA Microscopic transport model)

Y. Nara, N. Otuka, A. Ohnishi, K. Niita, S. Chiba, PRC61 (2000) 024901

- Applied to high-energy collisions (1 \sim 158 A GeV)
- Hadron-Hadron reactions are based on experimental data and the detailed balance.
- No mean field (default)
- s-wave pion production (NN \rightarrow NN π) is turned off. ... etc.

AMD test particles JAM

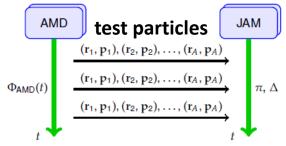
$$(r_1, p_1), (r_2, p_2), ..., (r_A, p_A)$$

 $(r_1, p_1), (r_2, p_2), ..., (r_A, p_A)$

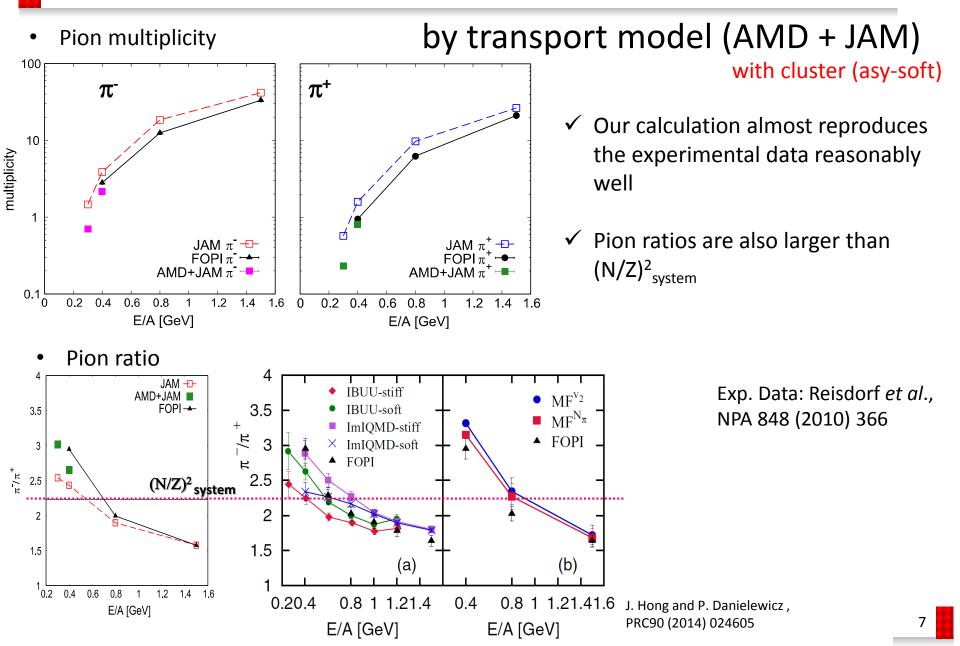
 $\boldsymbol{R}_{jk} = (\boldsymbol{Z}_{j}^{*} + \boldsymbol{Z}_{k})/\sqrt{\nu}$

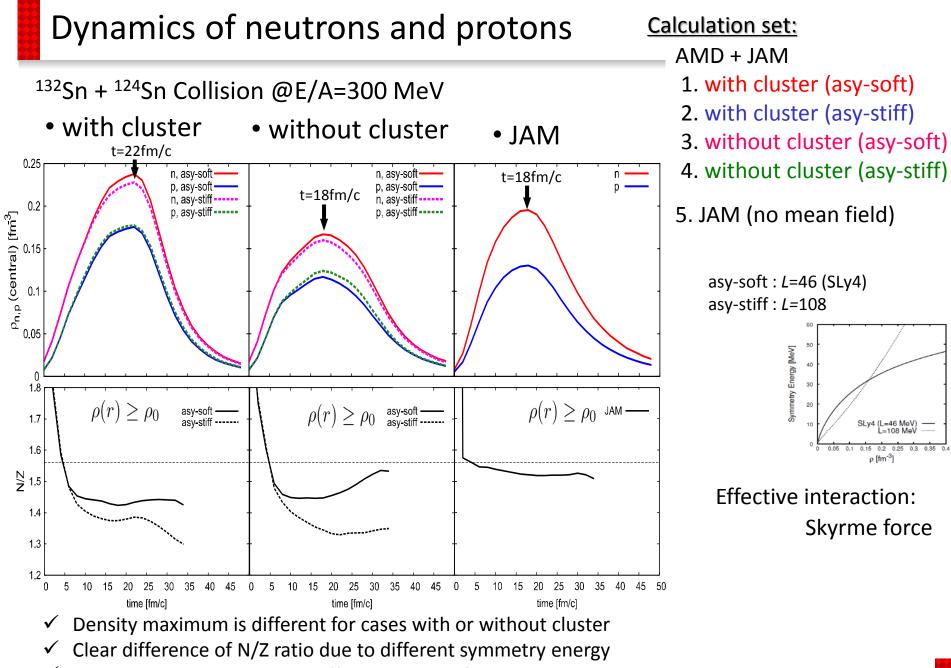
 $\boldsymbol{P}_{jk} = 2i\hbar\sqrt{\nu}(\boldsymbol{Z}_{j}^{*} - \boldsymbol{Z}_{k})$

 $B_{ik} = \langle \varphi_i | \varphi_k \rangle$

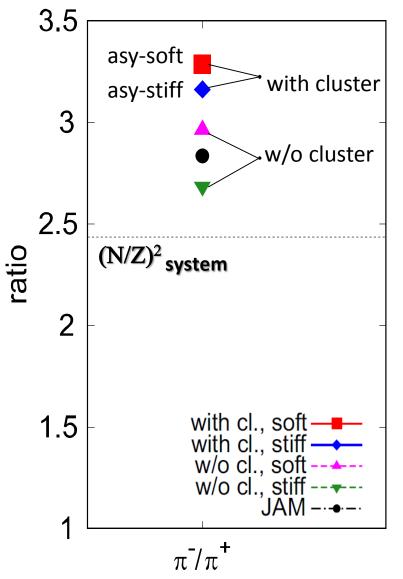


Pion Calcutions in central Au+Au collisions





Especially symmetry energy effect is weaker if there is cluster correlation

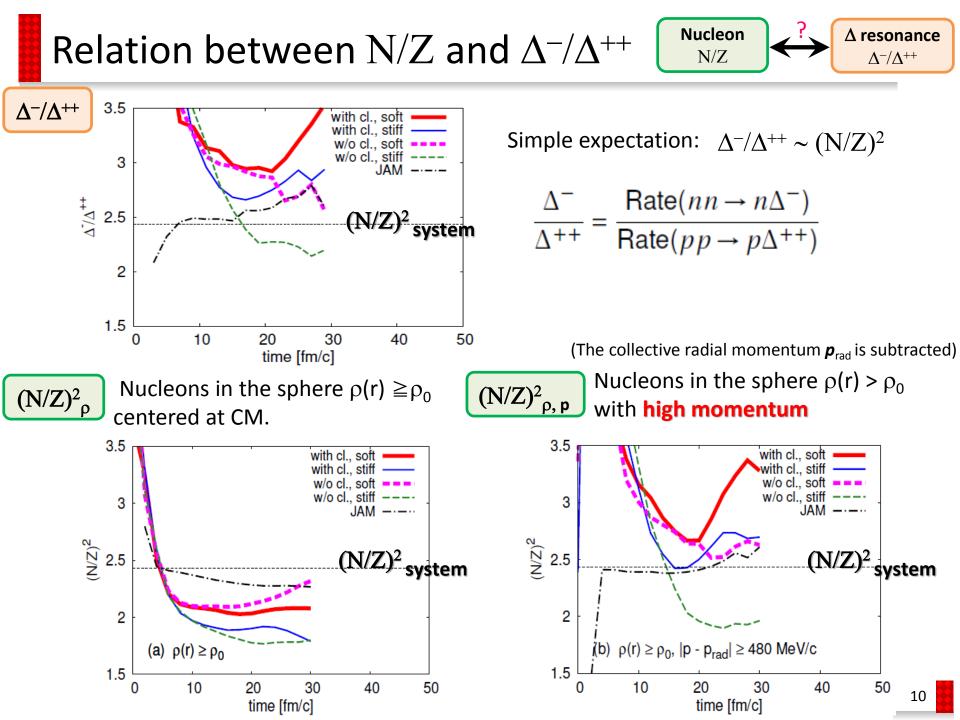


- 1. Symmetry energy dependence S(ρ)
 - π^{-}/π^{+} ratio with soft S(ρ) is larger -> Similar result to IBUU
- **2. Model dependence of nucleon dynamics** S(ρ) effect is weaker with cluster correlations
- 3. π^{-}/π^{+} ratio > $(N/Z)^{2}_{system}$

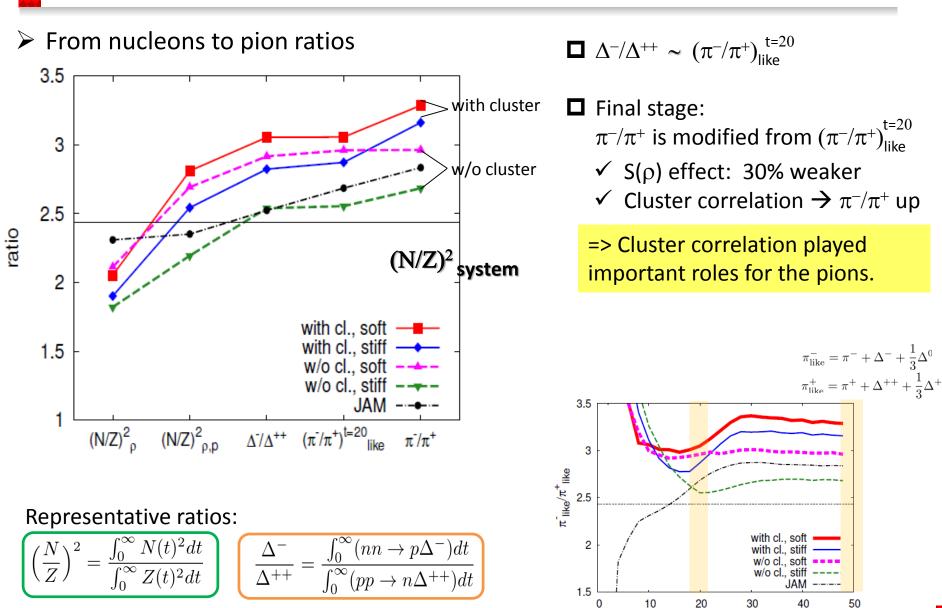
 \Rightarrow What is the origin of these behaviors?

 $NN \leftrightarrow N\Delta \qquad \Delta \leftrightarrow N\pi$

We study what kind of information of nucleon is carried by Δ resonances.



Final π^{-}/π^{+} ratio

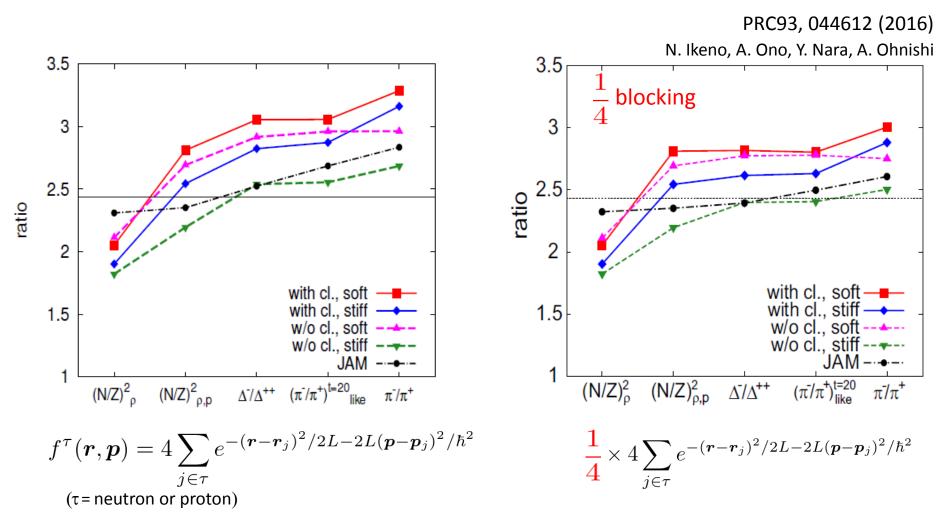


N(t), Z(t) : Numbers of nucleon which satisfy the conditions

time [fm/c]

Pauli-blocking effect

Recently, we found that Pauli-blocking effect is important.



 π^{-}/π^{+} and Δ^{-}/Δ^{++} ratios change due to Pauli-blocking effect.

Pauli-blocking effect

Pauli-blocking for the final nucleon(s) in two-body collisions

 π^{-} production

$$nn \to p\Delta^-$$
$$\Delta^- \to \underline{n}\pi$$

 π^+ production

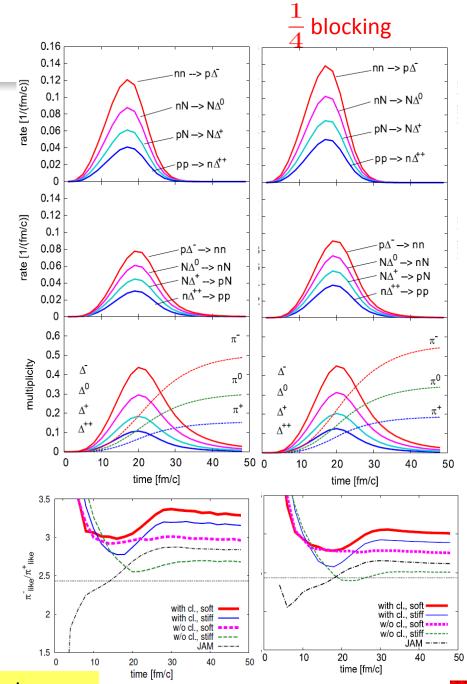
$$pp \to n\Delta^{++}$$
$$\Delta^{++} \to p\pi^{+}$$

When Effect of Pauli-blocking is stronger -> nucleons are blocked stronger -> Δ and π multiplicities are smaller

n-rich system

- -> neutrons are blocked stronger
- -> $\Delta^{\text{++}}$ and $\pi^{\text{+}}$ multiplicities are smaller
- -> π^{-}/π^{+} ratio is larger

Pauli-blocking effect played an important roles for the pions.



Methods for Pauli blocking factor

Use f of AMD for Pauli blocking

The Wigner function calculated for the AMD wave function, for τ = neutron or proton, is

$$f_{\text{AMD}}^{\tau}(\boldsymbol{r}, \boldsymbol{p}) = \frac{1}{2} \times 2^{3} \sum_{j \in \tau} \sum_{k \in \tau} e^{-2\nu(\boldsymbol{r} - \boldsymbol{R}_{jk})^{2} - (\boldsymbol{p} - \boldsymbol{P}_{jk})^{2}/2\hbar^{2}\nu} B_{jk} B_{kj}^{-1}$$

 $\begin{aligned} \mathbf{R}_{jk} &= (\mathbf{Z}_j^* + \mathbf{Z}_k) / \sqrt{\nu} \\ \mathbf{P}_{jk} &= 2i\hbar\sqrt{\nu}(\mathbf{Z}_j^* - \mathbf{Z}_k) \\ \mathbf{B}_{jk} &= \langle \varphi_j | \varphi_k \rangle \end{aligned}$

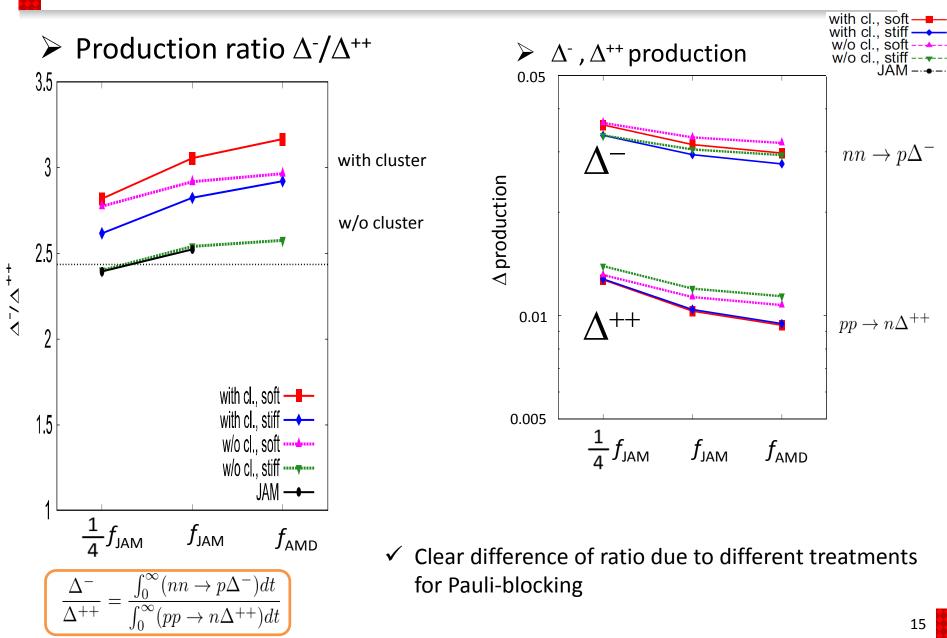
 $P_{\text{block}} = f_{\text{AMD}}^{\tau}(\mathbf{r}_{i}, \mathbf{p}'_{i})$ for the final phase-space point $(\mathbf{r}_{i}, \mathbf{p}'_{i})$.

Test particles {($\mathbf{r}_i, \mathbf{p}'_i$); , i=1,2, ... ,A} are generated with the probability distribution $f^{\tau}_{AMD}(\mathbf{r},\mathbf{p})$ and sent to JAM.

 $\blacktriangleright Do Pauli blocking within JAM$ $P_{block} = f^{\tau}_{JAM}(\mathbf{r}_{i}, \mathbf{p}'_{i}) with$ $<math display="block">\int f^{\tau}_{JAM}(\mathbf{r}, \mathbf{p}) = \frac{1}{2} \times 2^{3} \sum_{j \in \tau} e^{-(\mathbf{r} - \mathbf{r}_{j})^{2}/2L - 2L(\mathbf{p} - \mathbf{p}_{j})^{2}/\hbar^{2}} L=2.0 \text{ fm}^{2}$

=> We compare $\frac{1}{4}f_{JAM}$, f_{JAM} and f_{AMD} , to see the effect and importance of Pauli blocking treatment

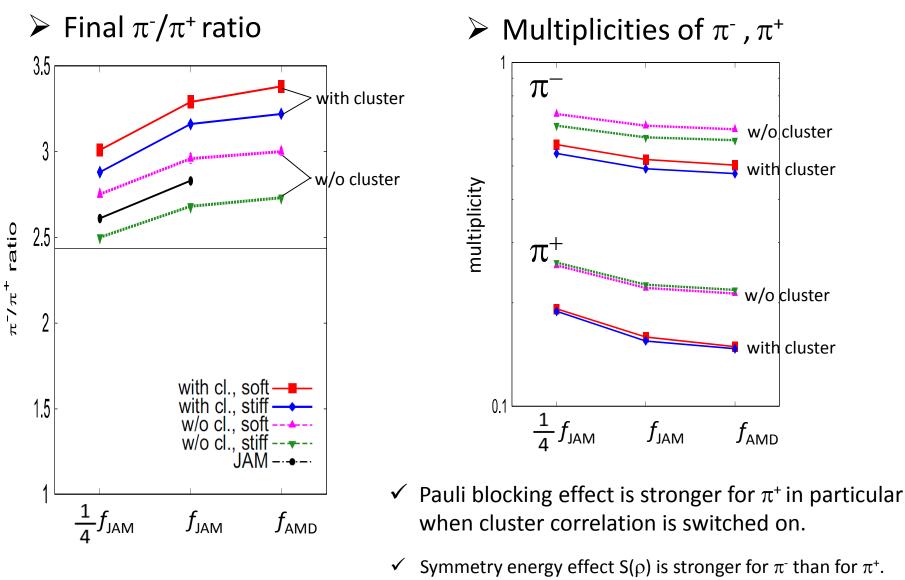
Different treatments for Pauli-blocking



Different treatments for Pauli-blocking

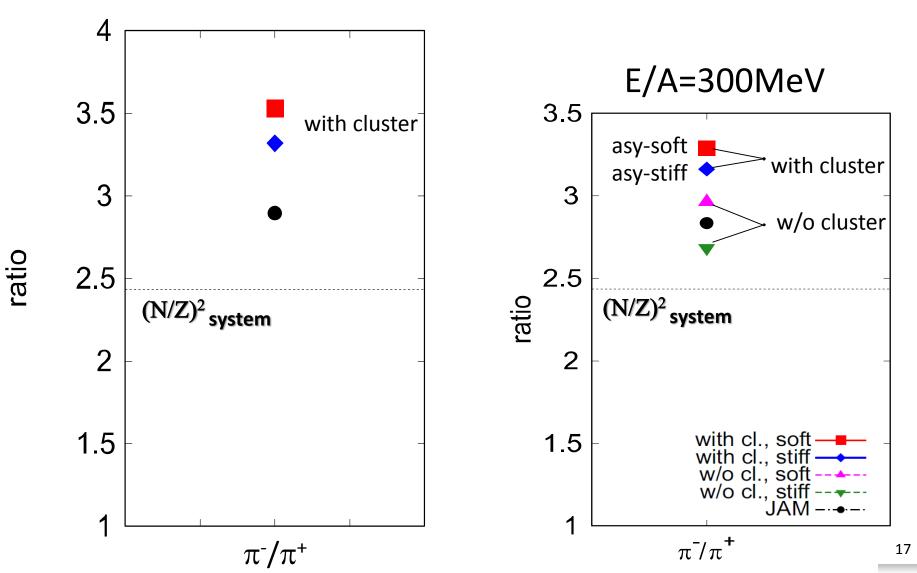
 $\Lambda \leftrightarrow N\pi$

 $NN \leftrightarrow N\Lambda$



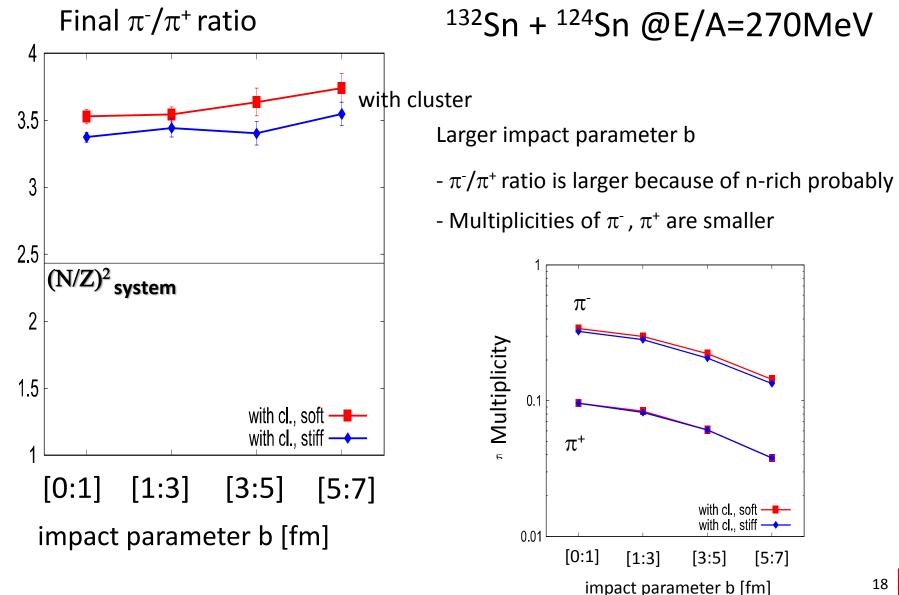
✓ Cluster correlation effect is stronger for π^+ .

Energy dependence of ¹³²Sn + ¹²⁴Sn \succ Final π^-/π^+ ratio



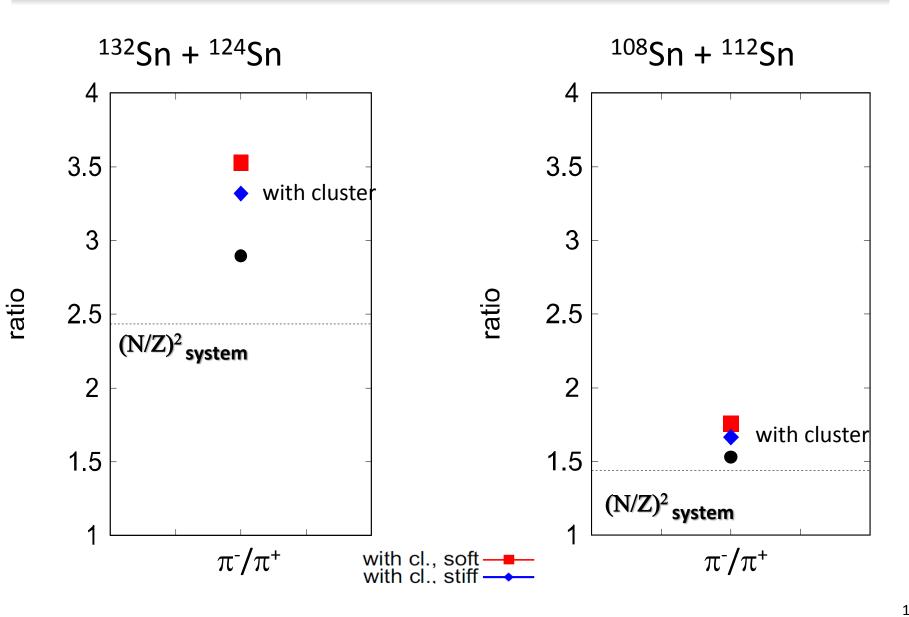
Impact parameter dependence

 π^{-}/π^{+} ratio



18

Different system @ E/A=270MeV : Experiment at $S\pi RIT$ project



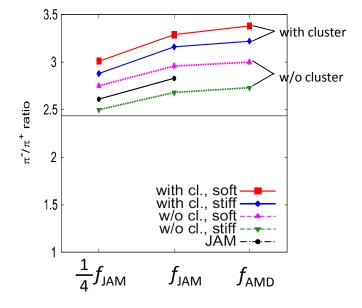
Summary: Pion production in Sn+Sn collisions by AMD+JAM

Motivation: To understand the mechanism how pions are produced reflecting the dynamics of neutrons and protons

- Pion ratio certainly carries the information on neutrons and protons
 - ✓ π^{-}/π^{+} and Δ^{-}/Δ^{++} ratios are related to the $(N/Z)^{2}$ in high- ρ and high-p region
 - ✓ In the final stage, π^{-}/π^{+} ratio is modified from $(\pi^{-}/\pi^{+})_{like}^{t=20}$

Important effects for pions

- Symmetry energy (soft/stiff)
 - ✓ π^{-}/π^{+} ratio with soft S(ρ) is larger
- Cluster correlation
 - ✓ S(ρ) effect is weaker with cluster correlations
- Pauli-blocking effect
 - ✓ Multiplicity and ratio change

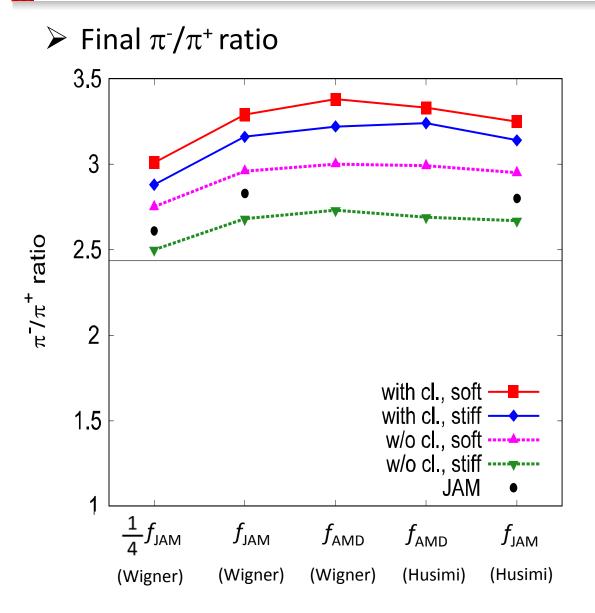


Future work:

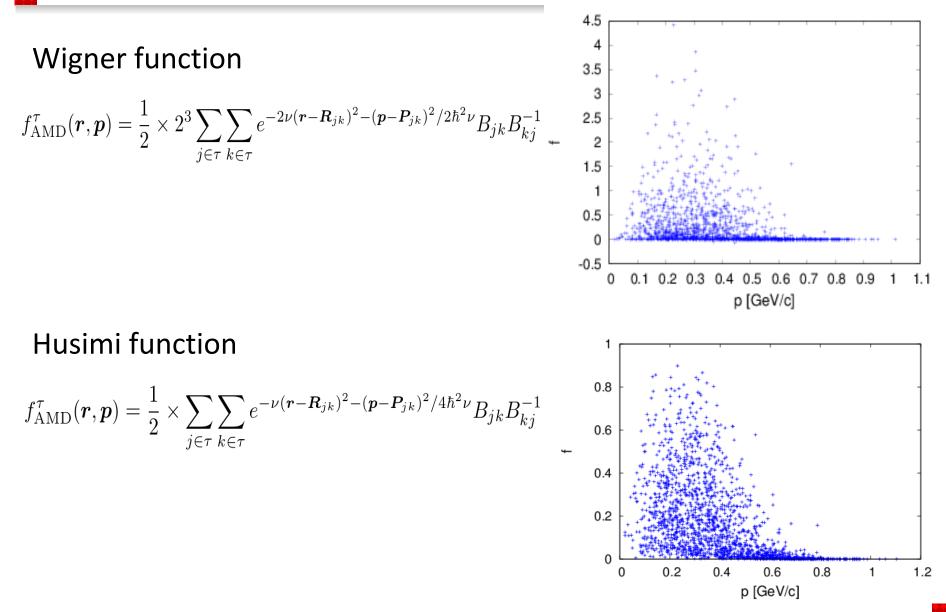
We calculate to compare with experimental data. We need to investigate pions but also other observables (cluster correlation)

- Δ resonance production threshold

Different treatments for Pauli-blocking

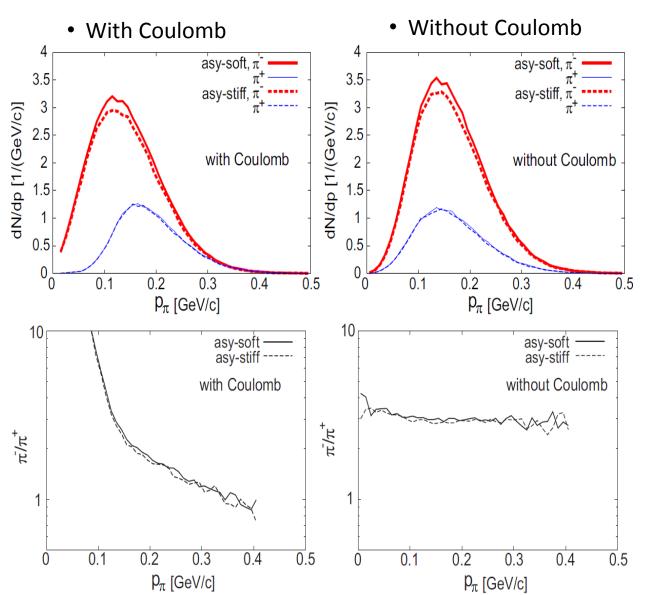


Phase space distribution function f



Pion spectra

AMD + JAM with cluster (asy-soft)



 Coulomb effect: Acceleration of π⁺ Deceleration of π⁻
 → Changes of pion spectra

	π^{-}	π^+	π^{-}/π^{+}
with Coulomb	0.577	0.192	3.01(1)
w/o Coulomb	0.582	0.193	3.02(1)

→ Coulomb effect has almost no effect on the pion multiplicities and the pion ratio.

Clusters at high density?

In the calculation, cluster correlation played important roles for the pions. But, in the high density region, should cluster correlations really exist?

3 Options: Treatment of cluster correlations

1. With cluster

Clusters are formed at any density.

2. Without cluster

Clusters are not formed at all.

NEW 3. With cluster ($\rho < 0.16 \text{ fm}^{-3}$)

Clusters are formed in the low density region ($\rho < 0.16 \text{ fm}^{-3}$) Clusters are not formed in the high density region ($\rho > 0.16 \text{ fm}^{-3}$)

Preliminary result with cluster ($\rho < 0.16 \text{ fm}^{-3}$)

> Dynamics of neutrons and protons

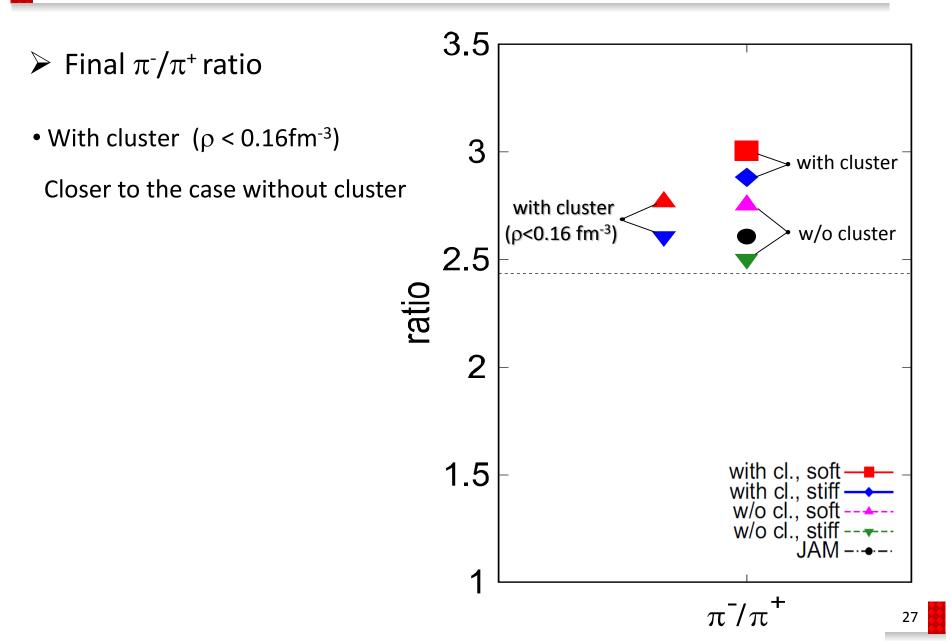
1. with cluster 2. without cluster t=22fm/c 0.25 0.25 n, asy-soft n, asy-soft n, asy-soft p, asy-soft p, asy-soft p. asv-soft t=18fm/c n, asy-stiff ----n, asy-stiff-----n, asy-stiff -----0.2 0.2 p, asy-stiff ----p, asy-stiff ----p. asy-stiff ----ρ_{n,p} (central) [fm³] ρ_{n, p} (central) [fm³] 0.15 0.15 0.1 0.1 0.05 0.05 1.8 1.8 asy-soft $\rho(r) \ge \rho_0$ $\rho(r) \ge \rho_0$ $\rho(r) \ge \rho_0$ asy-stiff ----asy-soft -----asy-soft 1.7 1.7 asy-stiff ------1.6 1.6 N/Z N 1.5 1.5 1.4 1.4 1.3 1.3 1.2 1.2 0 25 25 30 35 5 10 15 20 30 35 40 45 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 40 time [fm/c] time [fm/c] time [fm/c]

Density maximum is not as high as the case with cluster

3. With cluster (ρ <0.16fm⁻³)

45 50

Preliminary result with cluster (ρ < 0.16 fm⁻³)



Potential for Δ and pion

In JAM, reaction thresholds are the same as in free space.

(The production and absorption reactions for Δ and pions occur in the JAM calculation as in the free space)

Nucleons feel potential in the AMD calculation.

Therefore AMD+JAM assumes

$$NN \leftrightarrow N\Delta \qquad \Delta \leftrightarrow N\pi U_{\tau_1}^{(N)} + U_{\tau_2}^{(N)} = U_{\tau_3}^{(N)} + U_{\tau_4}^{(\Delta)}, \qquad U_{\tau_1}^{(\Delta)} = U_{\tau_3}^{(N)} + U_{\tau_4}^{(\pi)} \qquad \text{for } \tau_1(+\tau_2) = \tau_3 + \tau_4$$

This is equivalent to the choice in the pBUU calculation

c.f. Hong and Danielewicz, PRC 90 (2014) 024605

$$\begin{aligned} v_{asy}(\Delta^{-}) &= 2v_{asy}(n) - v_{asy}(p) = 3v_{asy}(n), \\ v_{asy}(\Delta^{0}) &= v_{asy}(n), \\ v_{asy}(\Delta^{+}) &= v_{asy}(p) = -v_{asy}(n), \\ v_{asy}(\Delta^{++}) &= 2v_{asy}(p) - v_{asy}(n) = -3v_{asy}(n). \end{aligned}$$

* Different choice, cf. Bao-An Li

$$\begin{split} v_{asy}(\Delta^{-}) &= v_{asy}(n), \\ v_{asy}(\Delta^{0}) &= \frac{2}{3}v_{asy}(n) + \frac{1}{3}v_{asy}(p) = \frac{1}{3}v_{asy}(n), \\ v_{asy}(\Delta^{+}) &= \frac{1}{3}v_{asy}(n) + \frac{2}{3}v_{asy}(p) = -\frac{1}{3}v_{asy}(n), \\ v_{asy}(\Delta^{++}) &= v_{asy}(p) = -v_{asy}(n). \end{split}$$